Insights into the Reactivation Process of Thermal Aged Bimetallic Pt-Pd/CeO2-ZrO2-La2O3 Catalysts at Different Treating Temperatures and Their Structure–Activity Evolutions for Three-Way Catalytic Performance

Author:

Wan Jie12ORCID,Chen Kai2,Sun Qi13,Zhou Yuanyuan14,Liu Yanjun1,Zhang Jin1,Dong Jiancong1,Wang Xiaoli3,Wu Gongde1,Zhou Renxian2

Affiliation:

1. Energy Research Institute, Nanjing Institute of Technology, Nanjing 211167, China

2. Institute of Catalysis, Zhejiang University, Hangzhou 310028, China

3. School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China

4. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China

Abstract

CeO2-ZrO2-La2O3 supported Pt-Pd bimetallic three-way catalysts (0.6Pt-0.4Pd/CZL) were synthesized through the conventional impregnation method and then subjected to severe thermal aging. Reactivating treatments under different temperatures were then applied to the aged catalysts above. Three-way catalytic performance evaluations and dynamic operation window tests along with detailed physio-chemical characterizations were carried out to explore possible structure–activity evolutions during the reactivating process. Results show that the reactivating process conducted at proper temperatures (500~550 °C) could effectively restore the TWC catalytic performance and widen the operation window width. The suitable reactivating temperature ranges are mainly determined by the decomposing temperature of PMOx species, the thermal stability of PM-O-Ce species, and the encapsulation temperature of precious metals by CZL support. Reactivating under appropriate temperature helps to restore the interaction between Pt and CZL support to a certain extent and to re-expose part of the encapsulated precious metals. Therefore, the dynamic oxygen storage/release capacity, redox ability, as well as thermal stability of PtOx species, can be improved, thus benefiting the TWC catalytic performances. However, the excessively high reactivating temperature would cause further embedment of Pd by CZL support, thus leading to a further decrease in both dynamic oxygen storage/release capacity and the TWC catalytic performance after reactivating treatment.

Funder

National Key Research and Development Program of China

Jiangsu Province Science and Technology Plan Special Fund

Key Research and Development Program of Anhui Province

Scientific Research Fund of Nanjing Institute of Technology

Provincial key project of Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3