Study on Catalytic Performance in CO2 Hydrogenation to Methanol over Au–Cu/C3N4 Catalysts

Author:

Li Chenyang1,Yang Jian12,Zhang Chongbin1,Wang Cong3,Lyu Chen1,Fan Kai4

Affiliation:

1. Key Laboratory of Songliao Aquatic Environment Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China

2. Key Laboratory of Ground Water Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China

3. China Municipal Engineering Northeast Design and Research Institute Co., Ltd., Changchun 130012, China

4. Yulin Municipal Ecology and Environment Bureau, Yulin 719053, China

Abstract

In this paper, Au and Cu nanoparticles were successfully loaded onto porous g-C3N4 material through a hydrothermal synthesis method. By adjusting the proportion of Cu, Au-5%Cu/C3N4, Au-10%Cu/C3N4, and Au-15%Cu/C3N4, catalysts were prepared and used for the catalytic reduction of CO2 to methanol. Characterization analysis using high-resolution XPS spectra showed that with an increase in the doping amount of Cu, the electron cloud density on the Cu surface initially increased and then decreased. Electrons from Au atoms transferred to Cu atoms, leading to the accumulation of a more negative charge on the Cu surface, promoting the adsorption of partially positively charged C in CO2, which is more beneficial for catalyzing CO2. Among them, Au-10%Cu/C3N4 exhibited good reducibility and strong basic sites, as demonstrated by H2-TPR and CO2-TPD, with the conversion rates for CO2, methanol yield, and methanol selectivity being 11.58%, 41.29 g·kg−1·h−1 (0.39 μmol·g−1s−1), and 59.77%, respectively.

Funder

Department of Science and Technology of Jilin Province

Bureau of Science and Technology of Yulin

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3