Sustainable Recovery of the Health of Soil with Old Petroleum Hydrocarbon Contamination through Individual and Microorganism-Assisted Phytoremediation with Lotus corniculatus

Author:

Meištininkas Rimas1,Vaškevičienė Irena1,Piotrowicz-Cieślak Agnieszka I.2ORCID,Krupka Magdalena2ORCID,Žaltauskaitė Jūratė13

Affiliation:

1. Laboratory of Heat Equipment Research and Testing, Lithuanian Energy Institute, Breslaujos 3, LT44404 Kaunas, Lithuania

2. Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-718 Olsztyn, Poland

3. Department of Environmental Sciences, Vytautas Magnus University, Universiteto 10, LT53361 Akademija, Lithuania

Abstract

Due to the large number of areas contaminated with TPH, there is significant interest in biological remediation technology research, offering a comprehensive and sustainable approach to soil decontamination and health recovery at the same time. This study aimed to investigate the effectiveness of remediating TPH-contaminated soil (6120 mg kg−1) using Lotus corniculatus along with a microorganism consortium (GTC-GVT/2021) isolated from historic TPH-contaminated sites. This study evaluated the removal of TPH and soil health recovery through changes in soil nutrient content, soil enzymatic activity, and the microbiological community. The growth of L. corniculatus was reduced in TPH-contaminated soil, particularly affecting root biomass by 52.17%. Applying inoculum positively affected total plant biomass in uncontaminated (51.44%) and contaminated (33.30%) soil. The GTC-GVT/2021 inoculum significantly enhanced the degradation of TPH in contaminated soil after 90 days by 20.8% and in conjunction with L. corniculatus by 26.33% compared to the control. The soil enzymatic activity was more pronounced in TPH-contaminated soil treatments, and in most cases, the presence of L. corniculatus and inoculum led to a significantly higher soil enzymatic activity. The cultivation of L. corniculatus and the inoculum resulted in an increased concentration of inorganic P, NH4+, and water-soluble phenols in the soil, while no rise in NO3− was observed.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3