Enhancing Traffic Efficiency and Sustainability through Strategic Placement of Roadside Units and Variable Speed Limits in a Connected Vehicle Environment

Author:

Bhattacharyya Kinjal1ORCID,Laharotte Pierre-Antoine2ORCID,Fauchet Eleonore2,Blache Hugues2,El Faouzi Nour-Eddin23ORCID

Affiliation:

1. Traffic Analysis and Logistics (TAL), Swedish National Road and Transport Research Institute (VTI), Olaus Magnus väg 35, 58195 Linköping, Sweden

2. LICIT-ECO7, Gustave Eiffel University, ENTPE, 25, Avenue F. Mitterrand, F-69675 Lyon, France

3. School of Architecture, Planning and Design (SAP+D), University Mohammed VI Polytechnic (UM6P), Ben Guerir 43150, Morocco

Abstract

With the deployment of cooperative intelligent transportation systems (C-ITSs), the telecommunication systems and their performance occupy a key position in ensuring safe, robust, and resilient services to the end-users. Regardless of the adopted protocol, adequate road network coverage might affect the service performance, in terms of traffic and environmental efficiency. In this study, we analyze the traffic efficiency and emission pollutant sensitivity to the location of ad hoc network antennas when the C-ITS services disseminate dynamic messages to control the speed limit and ensure sustainable mobility. We design the experimentation with short-range communication resulting from an ad hoc network and requiring Roadside Units (RSUs) along the road to broadcast messages within their communication range to the end-user. The performance variability according to the RSUs’ location and effective road network coverage are highlighted through our microscopic simulation-based experimentations. This paper develops a sensitivity analysis to evaluate the impact of the network mesh according to the C-ITS service under consideration. Focus is placed on the variable speed limit (VSL) service, controlling upstream speed to restrict congestion and ensure more sustainable mobility. The results show that, while the traffic efficiency improves even at a low market penetration rate (MPR) of the connected vehicles, the environmental efficiency improves only at a high MPR. From the telecommunication perspective, an expansive broadcast strategy appears to be more effective than the conservative approach.

Funder

https://www.c-roads.eu/pilots/core-members/france/Partner/project/show/indid.html

Connecting Europe Facility of the European Union

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3