In Silico Analysis of miRNA-Mediated Genes in the Regulation of Dog Testes Development from Immature to Adult Form

Author:

Kasimanickam Vanmathy R.1,Kasimanickam Ramanathan K.2ORCID

Affiliation:

1. Center for Reproductive Biology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA

2. Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA

Abstract

High-throughput in-silico techniques help us understand the role of individual proteins, protein–protein interaction, and their biological functions by corroborating experimental data as epitomized biological networks. The objective of this investigation was to elucidate the association of miRNA-mediated genes in the regulation of dog testes development from immature to adult form by in-silico analysis. Differentially expressed (DE) canine testis miRNAs between healthy immature (2.2 ± 0.13 months; n = 4) and mature (11 ± 1.0 months; n = 4) dogs were utilized in this investigation. In silico analysis was performed using miRNet, STRING, and ClueGo programs. The determination of mRNA and protein expressions of predicted pivotal genes and their association with miRNA were studied. The results showed protein–protein interaction for the upregulated miRNAs, which revealed 978 enriched biological processes GO terms and 127 KEGG enrichment pathways, and for the down-regulated miRNAs revealed 405 significantly enriched biological processes GO terms and 72 significant KEGG enrichment pathways (False Recovery Rate, p < 0.05). The in-silico analysis of DE-miRNA’s associated genes revealed their involvement in the governing of several key biological functions (cell cycle, cell proliferation, growth, maturation, survival, and apoptosis) in the testis as they evolve from immature to adult forms, mediated by several key signaling pathways (ErbB, p53, PI3K-Akt, VEGF and JAK-STAT), cytokines and hormones (estrogen, GnRH, relaxin, thyroid hormone, and prolactin). Elucidation of DE-miRNA predicted genes’ specific roles, signal transduction pathways, and mechanisms, by mimics and inhibitors, which could perhaps offer diagnostic and therapeutic targets for infertility, cancer, and birth control.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference87 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3