β-Lactam TRPM8 Antagonists Derived from Phe-Phenylalaninol Conjugates: Structure–Activity Relationships and Antiallodynic Activity

Author:

Martín-Escura Cristina12,Bonache M. Ángeles1ORCID,Medina Jessy A.1,Medina-Peris Alicia3ORCID,De Andrés-López Jorge3ORCID,González-Rodríguez Sara34ORCID,Kerselaers Sara5,Fernández-Ballester Gregorio3ORCID,Voets Thomas5ORCID,Ferrer-Montiel Antonio3ORCID,Fernández-Carvajal Asia3ORCID,González-Muñiz Rosario1ORCID

Affiliation:

1. Instituto de Química Médica (IQM-CSIC), 28006 Madrid, Spain

2. Alodia Farmacéutica SL, 28108 Alcobendas, Spain

3. IDiBE, Universidad Miguel Hernández, 03202 Elche, Spain

4. Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Julián Clavería 6, 33006 Oviedo, Spain

5. Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, VIB Center for Brain and Disease Research, KU Leuven, Herestraat 49 Box 802, 3000 Leuven, Belgium

Abstract

The protein transient receptor potential melastatin type 8 (TRPM8), a non-selective, calcium (Ca2+)-permeable ion channel is implicated in several pathological conditions, including neuropathic pain states. In our previous research endeavors, we have identified β-lactam derivatives with high hydrophobic character that exhibit potent and selective TRPM8 antagonist activity. This work describes the synthesis of novel derivatives featuring C-terminal amides and diversely substituted N′-terminal monobenzyl groups in an attempt to increase the total polar surface area (TPSA) in this family of compounds. The primary goal was to assess the influence of these substituents on the inhibition of menthol-induced cellular Ca2+ entry, thereby establishing critical structure–activity relationships. While the substitution of the tert-butyl ester by isobutyl amide moieties improved the antagonist activity, none of the N′-monobencyl derivatives, regardless of the substituent on the phenyl ring, achieved the activity of the model dibenzyl compound. The antagonist potency of the most effective compounds was subsequently verified using Patch-Clamp electrophysiology experiments. Furthermore, we evaluated the selectivity of one of these compounds against other members of the transient receptor potential (TRP) ion channel family and some receptors connected to peripheral pain pathways. This compound demonstrated specificity for TRPM8 channels. To better comprehend the potential mode of interaction, we conducted docking experiments to uncover plausible binding sites on the functionally active tetrameric protein. While the four main populated poses are located by the pore zone, a similar location to that described for the N-(3-aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)-benzamide (AMTB) antagonist cannot be discarded. Finally, in vivo experiments, involving a couple of selected compounds, revealed significant antinociceptive activity within a mice model of cold allodynia induced by oxaliplatin (OXA).

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3