A Novel tRNA-Derived Fragment, tRFGlnCTG, Regulates Angiogenesis by Targeting Antxr1 mRNA

Author:

Chen Qiuyang12ORCID,Shen Linyuan12,Liao Tianci12,Qiu Yanhao12,Lei Yuhang12,Wang Xingyu12,Chen Lei12,Zhao Ye12,Niu Lili12,Wang Yan12,Zhang Shunhua12,Zhu Li12,Gan Mailin12ORCID

Affiliation:

1. Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China

2. Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China

Abstract

As a novel non-coding RNA with important functions corresponding to various cellular stresses, the function of tRFs in angiogenesis remains unclear. Firstly, small RNA sequencing was performed on normal and post-muscle injury mouse tibialis anterior muscle to identify and analyse differentially expressed tRF/tiRNA. tRNA GlnCTG-derived fragments (tRFGlnCTG) were found to be overexpressed in high abundance in the damaged muscle. Subsequent in vitro experiments revealed that the overexpression of tRFGlnCTG suppressed the vascular endothelial cells’ viability, cell cycle G1/S transition, proliferation, migration, and tube-formation capacity. Similarly, in vivo experiments showed that the tRFGlnCTG decreased the relative mRNA levels of vascular endothelial cell markers and pro-angiogenic factors and reduced the proportion of CD31-positive cells. Finally, luciferase activity analysis confirmed that the tRFGlnCTG directly targeted the 3′UTR of Antxr1, leading to a significant reduction in the mRNA expression of the target gene. These results suggest that tRFGlnCTG is a key regulator of vascular endothelial cell function. The results provide a new idea for further exploration of the molecular mechanisms that regulate angiogenesis.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

China Agriculture Research System

National Center of Technology Innovation for Pigs

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3