Omics and Multi-Omics in IBD: No Integration, No Breakthroughs

Author:

Fiocchi Claudio12

Affiliation:

1. Department of Inflammation & Immunity, Lerner Research Institute, Cleveland, OH 44195, USA

2. Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA

Abstract

The recent advent of sophisticated technologies like sequencing and mass spectroscopy platforms combined with artificial intelligence-powered analytic tools has initiated a new era of “big data” research in various complex diseases of still-undetermined cause and mechanisms. The investigation of these diseases was, until recently, limited to traditional in vitro and in vivo biological experimentation, but a clear switch to in silico methodologies is now under way. This review tries to provide a comprehensive assessment of state-of-the-art knowledge on omes, omics and multi-omics in inflammatory bowel disease (IBD). The notion and importance of omes, omics and multi-omics in both health and complex diseases like IBD is introduced, followed by a discussion of the various omics believed to be relevant to IBD pathogenesis, and how multi-omics “big data” can generate new insights translatable into useful clinical tools in IBD such as biomarker identification, prediction of remission and relapse, response to therapy, and precision medicine. The pitfalls and limitations of current IBD multi-omics studies are critically analyzed, revealing that, regardless of the types of omes being analyzed, the majority of current reports are still based on simple associations of descriptive retrospective data from cross-sectional patient cohorts rather than more powerful longitudinally collected prospective datasets. Given this limitation, some suggestions are provided on how IBD multi-omics data may be optimized for greater clinical and therapeutic benefit. The review concludes by forecasting the upcoming incorporation of multi-omics analyses in the routine management of IBD.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3