The Association of Helicobacter pylori Biofilm with Enterovirus 71 Prolongs Viral Viability and Survival

Author:

Hassanbhai Ammar M.1,Phoon Meng Chee1,Chow Vincent T.12ORCID,Ho Bow13

Affiliation:

1. Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore

2. Host and Pathogen Interactivity Laboratory, NUHS Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore

3. Department of Food Science & Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore

Abstract

The transition time during which a virus leaves its host and infects the next susceptible host is critical for virus survival. Enterovirus 71 (EV71) is stable in aqueous environments, but its molecular interactions with bacteria and their biofilms are not well-established. Helicobacter pylori is a highly successful gut bacterial pathogen, with its capacity to form biofilms being linked to its transmission. Given that both are gut-associated microbes, we hypothesized that biofilms formed by H. pylori may play a significant role in the survival of EV71 in the external environment. In this study, we examine the interactions of EV71 with the preformed biofilm of H. pylori to mimic its natural state in the environment. Immunofluorescence confocal microscopy and scanning electron microscopy revealed that EV71 particles persisted for up to 10 days when incubated with the H. pylori biofilm. Furthermore, the presence of the H. pylori biofilm significantly augmented viral viability, as verified through virus plaque assays. Interestingly, the viability of EV71 was dependent on the quantity of H. pylori biofilm formation. Thus, two H. pylori strains able to generate large amounts of biofilm could facilitate EV71 viability for up to 17 days, whereas two other H. pylori strains that produced moderate or low quantities of biofilm could not prolong virus viability. It is interesting that biofilm contains N-acetyl-glucosamine and glycosaminoglycan, and that EV71 has binding affinity to cell-surface heparan sulfate glycosaminoglycan, which acts as an EV71 attachment receptor. The synergistic ability of H. pylori biofilm to promote EV71 viability for extended periods implies that H. pylori biofilm may serve as an additional pathway of EV71 transmission.

Funder

National University of Singapore

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3