Graph Convolutional Network and Contrastive Learning Small Nucleolar RNA (snoRNA) Disease Associations (GCLSDA): Predicting snoRNA–Disease Associations via Graph Convolutional Network and Contrastive Learning

Author:

Zhang Liangliang1ORCID,Chen Ming1,Hu Xiaowen1,Deng Lei1ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410083, China

Abstract

Small nucleolar RNAs (snoRNAs) constitute a prevalent class of noncoding RNAs localized within the nucleoli of eukaryotic cells. Their involvement in diverse diseases underscores the significance of forecasting associations between snoRNAs and diseases. However, conventional experimental techniques for such predictions suffer limitations in scalability, protracted timelines, and suboptimal success rates. Consequently, efficient computational methodologies are imperative to realize the accurate predictions of snoRNA–disease associations. Herein, we introduce GCLSDA—graph Convolutional Network and contrastive learning predict snoRNA disease associations. GCLSDA is an innovative framework that combines graph convolution networks and self-supervised learning for snoRNA–disease association prediction. Leveraging the repository of MNDR v4.0 and ncRPheno databases, we construct a robust snoRNA–disease association dataset, which serves as the foundation to create bipartite graphs. The computational prowess of the light graph convolutional network (LightGCN) is harnessed to acquire nuanced embedded representations of both snoRNAs and diseases. With careful consideration, GCLSDA intelligently incorporates contrast learning to address the challenging issues of sparsity and over-smoothing inside correlation matrices. This combination not only ensures the precision of predictions but also amplifies the model’s robustness. Moreover, we introduce the augmentation technique of random noise to refine the embedded snoRNA representations, consequently enhancing the precision of predictions. Within the domain of contrast learning, we unite the tasks of contrast and recommendation. This harmonization streamlines the cross-layer contrast process, simplifying the information propagation and concurrently curtailing computational complexity. In the area of snoRNA–disease associations, GCLSDA constantly shows its promising capacity for prediction through extensive research. This success not only contributes valuable insights into the functional roles of snoRNAs in disease etiology, but also plays an instrumental role in identifying potential drug targets and catalyzing innovative treatment modalities.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3