MicroRNAs and Nonalcoholic Steatohepatitis: A Review

Author:

Morishita Asahiro1ORCID,Oura Kyoko1ORCID,Tadokoro Tomoko1ORCID,Fujita Koji1,Tani Joji1,Kobara Hideki1,Ono Masafumi1,Himoto Takashi1,Masaki Tsutomu1

Affiliation:

1. Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun 761-0793, Japan

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a clinicopathologic syndrome caused by fat deposition in hepatocytes. Patients with nonalcoholic steatohepatitis (NASH), an advanced form of NAFLD with severe fibrosis, are at high risk for liver-related complications, including hepatocellular carcinoma (HCC). However, the mechanism of progression from simple fat deposition to NASH is complex, and previous reports have linked NAFLD to gut microbiota, bile acids, immunity, adipokines, oxidative stress, and genetic or epigenetic factors. NASH-related liver injury involves multiple cell types, and intercellular signaling is thought to be mediated by extracellular vesicles. MicroRNAs (miRNAs) are short, noncoding RNAs that play important roles as post-transcriptional regulators of gene expression and have been implicated in the pathogenesis of various diseases. Recently, many reports have implicated microRNAs in the pathogenesis of NALFD/NASH, suggesting that exosomal miRNAs are potential non-invasive and sensitive biomarkers and that the microRNAs involved in the mechanism of the progression of NASH may be potential therapeutic target molecules. We are interested in which miRNAs are involved in the pathogenesis of NASH and which are potential target molecules for therapy. We summarize targeted miRNAs associated with the etiology and progression of NASH and discuss each miRNA in terms of its pathophysiology, potential therapeutic applications, and efficacy as a NASH biomarker.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3