3D PEEK Objects Fabricated by Fused Filament Fabrication (FFF)

Author:

Baek InwooORCID,Kwon Oeun,Lim Chul-Min,Park Kyoung Youl,Bae Chang-Jun

Abstract

PEEK (poly ether ether ketone) materials printed using FFF 3D printing have been actively studied on applying electronic devices in satellites owing to their excellent light weight and thermal resistance. However, the PEEK FFF process generated cavities inside due to large shrinkage has degraded both mechanical integrity and printing reliability. Here, we have investigated the correlations between nozzle temperatures and PEEK printing behaviors such as the reliability of printed line width and surface roughness. As the temperature increased from 360 to 380 °C, the width of the printed line showed a tendency to decrease. However, the width of PEEK printed lines re-increased from 350 to 426 μm at the nozzle temperatures between 380 and 400 °C, associated with solid to liquid-like phase transition and printed out distorted and disconnected lines. The surface roughness of PEEK objects increased from 49 to 55 μm as the nozzle temperature increased from 380 to 400 °C, where PEEK is melted down and quickly solidified based on more energy and additional heating time at higher printing temperatures at 400 °C. Based on these printing trends, a reliability analysis of the printed line was performed. The printed line formed the most uniform width at 380 °C and had a highest Weibull coefficient of 28.6 using the reliability analysis technique called Weibull modulus.

Funder

Agency for Defense Development

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3