Fungal Fermented Palm Kernel Expeller as Feed for Black Soldier Fly Larvae in Producing Protein and Biodiesel

Author:

Liew Chin Seng,Wong Chung Yiin,Abdelfattah Eman A.,Raksasat Ratchaprapa,Rawindran Hemamalini,Lim Jun WeiORCID,Kiatkittipong WoraponORCID,Kiatkittipong KunlananORCID,Mohamad Mardawani,Yek Peter Nai Yuh,Setiabudi Herma Dina,Cheng Chin Kui,Lam Su ShiungORCID

Abstract

Being the second-largest country in the production of palm oil, Malaysia has a massive amount of palm kernel expeller (PKE) leftover. For that purpose, black soldier fly larvae (BSFL) are thus employed in this study to valorize the PKE waste. More specifically, this work elucidated the effects of the pre-fermentation of PKE via different amounts of Rhizopus oligosporus to enhance PKE palatability for the feeding of BSFL. The results showed that fermentation successfully enriched the raw PKE and thus contributed to the better growth of BSFL. BSFL grew to be 34% heavier at the optimum inoculum volume of 0.5 mL/10 g dry weight of PKE as compared to the control. Meanwhile, excessive fungal inoculum induced competition between BSFL and R. oligosporus, resulting in a reduction in BSFL weight. Under optimum feeding conditions, BSFL also registered the highest lipid yield (24.7%) and protein yield (44.5%). The biodiesel derived from BSFL lipid had also shown good compliance with the European biodiesel standard EN 14214. The high saturated fatty acid methyl esters (FAMEs) content (C12:0, C14:0, C16:0) in derived biodiesel made it highly oxidatively stable. Lastly, the superior degradation rate of PKE executed by BSFL further underpinned the sustainable conversion process in attaining valuable larval bioproducts.

Funder

Ministry of Higher Education Malaysia

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3