Carbon (δ13C) and Nitrogen (δ15N) Isotope Dynamics during Decomposition of Norway Spruce and Scots Pine Litter

Author:

Gautam Mukesh K.12ORCID,Berg Björn3ORCID,Lee Kwang-Sik2ORCID

Affiliation:

1. Biology Department, Medgar Evers College, City University of New York, New York, NY 11225, USA

2. Research Center for Earth and Environmental Science, Korea Basic Science Institute, Cheongju-si 28119, Chungbuk, Republic of Korea

3. Department of Forest Sciences, University of Helsinki, 00014 Helsinki, Finland

Abstract

We studied the dynamics of stable carbon (δ13C) and nitrogen (δ15N) isotopes in litter from Norway spruce (NSL) (Picea abies) and Scots pine (SPL) (Pinus silvestris) during in situ decomposition over a period of more than 4 years. Relative to initial values, δ13CNSL showed a weak enrichment (0.33‰), whereas δ13CSPL was depleted (−0.74‰) at the end of decomposition. Both litter types experienced a depletion in δ15N during decomposition; δ15NNSL decreased by −1.74‰ and δ15NSPL decreased by −1.99‰. The effect of the selective preservation of acid-unhydrolyzable residue (AUR) in lowering δ13C of the residual litter was evident only in SPL. In the NSL, only in the initial stage did C/N have a large effect on the δ13C values. In the later stages, there was a non-linear decrease in δ13CNSL with a simultaneous increase in AUR concentrations, but the effect size was large, suggesting the role of lignin in driving δ13C of residues in later stages. Depletion in 15N in the residual litters concomitant with the increase in N concentration suggests bacterial transformation of the litter over fungal components. A consistent decline in δ15N values further implies that bacterial dominance prompted this by immobilizing nitrate depleted in 15N in the residual litter.

Funder

Korea Basic Science Institute

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3