IIP-Mixer: Intra–Inter-Patch Mixing Architecture for Battery Remaining Useful Life Prediction

Author:

Ye Guangzai1ORCID,Feng Li1ORCID,Guo Jianlan2,Chen Yuqiang2

Affiliation:

1. School of Computer Science and Engineering, Macau University of Science and Technology, Macau SAR, China

2. Dongguan Polytechnic, Dongguan 523808, China

Abstract

Accurately estimating the Remaining Useful Life (RUL) of lithium-ion batteries is crucial for maintaining the safe and stable operation of rechargeable battery management systems. However, this task is often challenging due to the complex temporal dynamics. Recently, attention-based networks, such as Transformers and Informer, have been the popular architecture in time series forecasting. Despite their effectiveness, these models with abundant parameters necessitate substantial training time to unravel temporal patterns. To tackle these challenges, we propose a straightforward MLP-Mixer-based architecture named “Intra–Inter Patch Mixer” (IIP-Mixer), which leverages the strengths of multilayer perceptron (MLP) models to capture both local and global temporal patterns in time series data. Specifically, it extracts information using an MLP and performs mixing operations along both intra-patch and inter-patch dimensions for battery RUL prediction. The proposed IIP-Mixer comprises parallel dual-head mixer layers: the intra-patch mixing MLP, capturing local temporal patterns in the short-term period, and the inter-patch mixing MLP, capturing global temporal patterns in the long-term period. Notably, to address the varying importance of features in RUL prediction, we introduce a weighted loss function in the MLP-Mixer-based architecture, marking the first time such an approach has been employed. Our experiments demonstrate that IIP-Mixer achieves competitive performance in battery RUL prediction, outperforming other popular time series frameworks, such as Informer and DLinear, with relative reductions in mean absolute error (MAE) of 24% and 10%, respectively.

Funder

Science and Technology Development Fund

National Natural Science Foundation of China

Guangdong Provincial Department of Education’s Key Special Projects

Special Fund for Dongguan’s Rural Revitalization Strategy

Dongguan Sci-tech Commissioner Program

Dongguan Science and Technology of Social Development Program

Dongguan Songshan Lake Enterprise Special Envoy Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3