Singular and Multimodal Techniques of 3D Object Detection: Constraints, Advancements and Research Direction

Author:

Karim Tajbia1,Mahayuddin Zainal Rasyid1,Hasan Mohammad Kamrul1ORCID

Affiliation:

1. Center for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

Abstract

Two-dimensional object detection techniques can detect multiscale objects in images. However, they lack depth information. Three-dimensional object detection provides the location of the object in the image along with depth information. To provide depth information, 3D object detection involves the application of depth-perceiving sensors such as LiDAR, stereo cameras, RGB-D, RADAR, etc. The existing review articles on 3D object detection techniques are found to be focusing on either a singular modality (e.g., only LiDAR point cloud-based) or a singular application field (e.g., autonomous vehicle navigation). However, to the best of our knowledge, there is no review paper that discusses the applicability of 3D object detection techniques in other fields such as agriculture, robot vision or human activity detection. This study analyzes both singular and multimodal techniques of 3D object detection techniques applied in different fields. A critical analysis comprising strengths and weaknesses of the 3D object detection techniques is presented. The aim of this study is to facilitate future researchers and practitioners to provide a holistic view of 3D object detection techniques. The critical analysis of the singular and multimodal techniques is expected to help the practitioners find the appropriate techniques based on their requirement.

Funder

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference138 articles.

1. Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016, January 27–30). You Only Look Once: Unified, Real-Time Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA. Available online: http://pjreddie.com/yolo/.

2. Redmon, J., and Farhadi, A. (2017, January 21–26). YOLO9000: Better, Faster, Stronger. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA. Available online: http://pjreddie.com/yolo9000/.

3. Redmon, J., and Farhadi, A. (2018). YOLOv3: An Incremental Improvement. in Computer vision and pattern recognition. arXiv.

4. Bochkovskiy, A., Wang, C.-Y., and Liao, H. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv.

5. Thuan, D. (2023, January 19). Evolution of Yolo Algorithm and Yolov5: The State-of-the-Art Object Detention Algorithm. 2021. Available online: http://www.theseus.fi/handle/10024/452552.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3