Optimal Training Dataset Preparation for AI-Supported Multilanguage Real-Time OCRs Using Visual Methods

Author:

Biró Attila123ORCID,Szilágyi Sándor Miklós1ORCID,Szilágyi László45ORCID

Affiliation:

1. Department of Electrical Engineering and Information Technology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Str. Nicolae Iorga, Nr. 1, 540088 Targu Mures, Romania

2. Department of Physiotherapy, University of Malaga, 29071 Malaga, Spain

3. Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain

4. Physiological Controls Research Center, Óbuda University, Bécsi út 96/B, 1034 Budapest, Hungary

5. Computational Intelligence Research Group, Sapientia Hungarian University of Transylvania, 540485 Targu Mures, Romania

Abstract

In the realm of multilingual, AI-powered, real-time optical character recognition systems, this research explores the creation of an optimal, vocabulary-based training dataset. This comprehensive endeavor seeks to encompass a range of criteria: comprehensive language representation, high-quality and diverse data, balanced datasets, contextual understanding, domain-specific adaptation, robustness and noise tolerance, and scalability and extensibility. The approach aims to leverage techniques like convolutional neural networks, recurrent neural networks, convolutional recurrent neural networks, and single visual models for scene text recognition. While focusing on English, Hungarian, and Japanese as representative languages, the proposed methodology can be extended to any existing or even synthesized languages. The development of accurate, efficient, and versatile OCR systems is at the core of this research, offering societal benefits by bridging global communication gaps, ensuring reliability in diverse environments, and demonstrating the adaptability of AI to evolving needs. This work not only mirrors the state of the art in the field but also paves new paths for future innovation, accentuating the importance of sustained research in advancing AI’s potential to shape societal development.

Funder

ITware, Hungary

University of Malaga

Department of Electrical Engineering and Information Technology of George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures

Consolidator Excellence Researcher Program of Óbuda University, Budapest, Hungary

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3