The Design and Testing of an Additive Manufacturing-Obtained Compliant Mechanism for the Complex Personalisation of Lenses in Clinical Optometry

Author:

Constantin Victor1,Comeagă Daniel1ORCID,Grămescu Bogdan1ORCID,Besnea Daniel1,Moraru Edgar1ORCID

Affiliation:

1. Department of Mechatronics and Precision Mechanics, Faculty of Mechanical Engineering and Mechatronics, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania

Abstract

The precision needed in optometric measurements for the correct customization of progressive lenses usually falls short of what is required for accurate prescriptions. This usually stems from the fact that most measurements are obtained using outdated methods, employing either rulers or protractors. While there is equipment available for precise measurements, the cost of purchase and ownership is usually prohibitive. In this context, due to constant progress in high-resolution cameras along with the processing power of handheld devices, another solution has presented itself in different iterations in the past decade, as put forward by different manufacturers of optical lenses. Such a system comprises a mobile computing device with image capture and processing capabilities (tablet or smartphone), along with a marker support system to be mounted on the user’s glasses frames. Aside from cost, the ease of implementation and usage, the advantage of such a system is that the parameters, as measured, allow for better customization, since the eyewear is already in the position in which it will be used. It allows the optometrist to measure parameters such as interpupillary distance, pantoscopic angle and the curvature of the eyewear in relation to the user’s own specific shape and size. This paper proposes a model of a marker support system that is easy to use, precise, low in cost and has minimal impact on the measurements obtained by the optometrist. As such, this paper examines the steps for determining the shape needed for supports in relation to the measurements that need to be taken; a finite element analysis of the support was proposed, along with various tests and modifications that were made to the device until a specific shape and material combination was found that satisfied all of the parameters required. An experimental model of the system was produced and tested on a wide variety of glasses frames with good results, as presented in the following work.

Funder

National University of Science and Technology Politehnica Bucharest’s PubART project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3