Synergizing Machine Learning Algorithm with Triboelectric Nanogenerators for Advanced Self-Powered Sensing Systems

Author:

Li Roujuan12ORCID,Wei Di1ORCID,Wang Zhonglin13ORCID

Affiliation:

1. Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China

2. School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

Abstract

The advancement of the Internet of Things (IoT) has increased the demand for large-scale intelligent sensing systems. The periodic replacement of power sources for ubiquitous sensing systems leads to significant resource waste and environmental pollution. Human staffing costs associated with replacement also increase the economic burden. The triboelectric nanogenerators (TENGs) provide both an energy harvesting scheme and the possibility of self-powered sensing. Based on contact electrification from different materials, TENGs provide a rich material selection to collect complex and diverse data. As the data collected by TENGs become increasingly numerous and complex, different approaches to machine learning (ML) and deep learning (DL) algorithms have been proposed to efficiently process output signals. In this paper, the latest advances in ML algorithms assisting solid–solid TENG and liquid–solid TENG sensors are reviewed based on the sample size and complexity of the data. The pros and cons of various algorithms are analyzed and application scenarios of various TENG sensing systems are presented. The prospects of synergizing hardware (TENG sensors) with software (ML algorithms) in a complex environment and their main challenges for future developments are discussed.

Funder

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3