Degradation of Graphene in High- and Low-Humidity Air, and Vacuum Conditions at 300–500 K

Author:

Kawabata Shunsuke1,Seki Ryuichi1,Watanabe Takumi1ORCID,Ohba Tomonori1ORCID

Affiliation:

1. Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan

Abstract

Graphene is a fundamental unit of carbon materials and, thus, primary sp2-bonded carbon material. Graphene is, however, easily broken macroscopically despite high mechanical strength, although its natural degradation has rarely been considered. In this work, we evaluate the natural degradation of two-layer graphene in vacuo, in low-humidity air, and in high-humidity air at 300, 400, 450, and 500 K. Over 1000 days of degradation at 300 K, the graphene structure was highly maintained in vacuo, whereas the layer number of graphene tended to decrease in high- and low-humidity air. Water was slightly reacted/chemisorbed on graphene to form surface oxygen groups at 300 K. At 450 and 500 K, graphene was moderately volatilized in vacuo and was obviously oxidized in high- and low-humidity air. Surprisingly, the oxidation of graphene was more suppressed in the high-humidity air than in the low-humidity air, indicating that water worked as an anti-oxidizer of graphene by preventing the chemisorption of oxygen on the graphene surface.

Funder

JSPS KAKENHI

New Energy and Industrial Technology Development Organization

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3