Affiliation:
1. Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
Abstract
Control over the composition of III–V ternary nanowires grown by the vapor–liquid–solid (VLS) method is essential for bandgap engineering in such nanomaterials and for the fabrication of functional nanowire heterostructures for a variety of applications. From the fundamental viewpoint, III–V ternary nanowires based on group V intermix (InSbxAs1−x, InPxAs1−x, GaPxAs1−x and many others) present the most difficult case, because the concentrations of highly volatile group V atoms in a catalyst droplet are beyond the detection limit of any characterization technique and therefore principally unknown. Here, we present a model for the vapor–solid distribution of such nanowires, which fully circumvents the uncertainties that remained in the theory so far, and we link the nanowire composition to the well-controlled parameters of vapor. The unknown concentrations of group V atoms in the droplet do not enter the distribution, despite the fact that a growing solid is surrounded by the liquid phase. The model fits satisfactorily the available data on the vapor–solid distributions of VLS InSbxAs1−x, InPxAs1−x and GaPxAs1−x nanowires grown using different catalysts. Even more importantly, it provides a basis for the compositional control of III–V ternary nanowires based on group V intermix, and it can be extended over other material systems where two highly volatile elements enter a ternary solid alloy through a liquid phase.
Funder
St. Petersburg State University
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献