A Snapshot of the Taxonomic Composition and Metabolic Activity of the Microbial Community in an Arctic Harbour (Ny-Ålesund, Kongsfjorden, Svalbard)

Author:

Cappello Simone1ORCID,Smedile Francesco2,Caruso Gabriella2ORCID,Patania Sabrina3,Lunetta Alessia1ORCID,Azzaro Maurizio2ORCID

Affiliation:

1. Institute for Biological Resources and Marine Biotechnologies, Section of Messina, National Research Council (CNR-IRBIM), Spianata S. Rineri 86, 98122 Messina, Italy

2. Institute of Polar Sciences, Section of Messina, National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy

3. PhD School of “Applied Biology and Experimental Medicine”, Faculty of Sciences, University of Messina, Viale F. Stagno D’Alcontres 5, 98166 Messina, Italy

Abstract

Within the Svalbard archipelago, Kongsfjorden is an important marine ecosystem that is recognised as one of the main representative Arctic glacial fjords. Prokaryotic organisms are key drivers of important ecological processes such as carbon fluxes, nutrient mineralisation, and energy transfer, as well as sentinels of environmental pollution, especially in sediments, that are a repository of contaminants. In some areas of the Arctic, the structure and metabolic activity of the microbial community in the organic matter turnover and globally in the functioning of the benthic domain are mostly still unknown. A snapshot of the main microbial parameters such as bacterial abundance (by microscopic and plate counts), structure (by 16S rRNA sequencing), and metabolic activity was provided in Ny-Ålesund harbour, contextually in seawater and sediment samples. Fluorogenic substrates were used to assess the microbial ability to utilise organic substrates such as proteins, polysaccharides, and organic phosphates through specific enzymatic assays (leucine aminopeptidase—LAP, beta-glucosidase—ß-GLU, and alkaline phosphatase—AP, respectively). The metabolic profiles of psychrophilic heterotrophic bacterial isolates were also screened using a qualitative assay. The phylogenetic analysis of the microbial community revealed that Proteobacteria prevailed among the observed taxonomic groups. Several of the observed sequences were assigned to clones found in harbours, microbial biofilms, antifouling paints, or oil-polluted facilities of cold environments, highlighting a signature of human pressure on the polar habitat of Ny-Ålesund harbour.

Funder

Italian Ministry of Education, University and Research

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3