Environmental Compatibility and Genome Flexibility of Klebsiella oxytoca Isolated from Eight Species of Aquatic Animals

Author:

Sun Shuo12,Gu Tingting12,Ou Yafei12,Wang Yongjie12ORCID,Xie Lu3ORCID,Chen Lanming12

Affiliation:

1. Key Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs of China, Shanghai 201306, China

2. College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China

3. Institute for Genome and Bioinformatics, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China

Abstract

Klebsiella oxytoca is an emerging pathogen that can cause life-threatening infectious diseases in humans. Recently, we firstly reported for the first time the presence of K. oxytoca in edible aquatic animals. In this study, we further investigated its bacterial environmental fitness and genome evolution signatures. The results revealed that K. oxytoca isolates (n = 8), originating from eight species of aquatic animals, were capable of growing under a broad spectrum of environmental conditions (pH 4.5–8.5, 0.5–6.5% NaCl), with different biofilm formation and swimming mobility profiles. The genome sequences of the K. oxytoca isolates were determined (5.84–6.02 Mb, 55.07–56.06% GC content). Strikingly, numerous putative mobile genetic elements (MGEs), particularly genomic islands (GIs, n = 105) and prophages (n = 24), were found in the K. oxytoca genomes, which provided the bacterium with specific adaptation traits, such as resistance, virulence, and material metabolism. Interestingly, the identified prophage-related clusters were derived from Burkholderia spp., Enterobacter spp., Klebsiella spp., Pseudomonas spp., and Haemophilus spp., suggesting phage transmission across Klebsiella and the other four genera. Many strain-specific (n = 10–447) genes were present in the K. oxytoca genomes, whereas the CRISPR-Cas protein-encoding gene was absent, indicating likely active horizontal gene transfer (HGT) and considerable genome variation in K. oxytoca evolution. Overall, the results of this study are the first to demonstrate the environmental compatibility and genome flexibility of K. oxytoca of aquatic animal origins.

Funder

Shanghai Municipal Science and Technology Commission

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3