Epigenetic Changes and Chromatin Reorganization in Brain Function: Lessons from Fear Memory Ensemble and Alzheimer’s Disease

Author:

van Zundert BrigitteORCID,Montecino MartinORCID

Abstract

Healthy brain functioning in mammals requires a continuous fine-tuning of gene expression. Accumulating evidence over the last three decades demonstrates that epigenetic mechanisms and dynamic changes in chromatin organization are critical components during the control of gene transcription in neural cells. Recent genome-wide analyses show that the regulation of brain genes requires the contribution of both promoter and long-distance enhancer elements, which must functionally interact with upregulated gene expression in response to physiological cues. Hence, a deep comprehension of the mechanisms mediating these enhancer–promoter interactions (EPIs) is critical if we are to understand the processes associated with learning, memory and recall. Moreover, the onset and progression of several neurodegenerative diseases and neurological alterations are found to be strongly associated with changes in the components that support and/or modulate the dynamics of these EPIs. Here, we overview relevant discoveries in the field supporting the role of the chromatin organization and of specific epigenetic mechanisms during the control of gene transcription in neural cells from healthy mice subjected to the fear conditioning paradigm, a relevant model to study memory ensemble. Additionally, special consideration is dedicated to revising recent results generated by investigators working with animal models and human postmortem brain tissue to address how changes in the epigenome and chromatin architecture contribute to transcriptional dysregulation in Alzheimer’s disease, a widely studied neurodegenerative disease. We also discuss recent developments of potential new therapeutic strategies involving epigenetic editing and small chromatin-modifying molecules (or epidrugs).

Funder

ANID-FONDECYT

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3