Chronic Arsenic Exposure Upregulates the Expression of Basal Transcriptional Factors and Increases Invasiveness of the Non-Muscle Invasive Papillary Bladder Cancer Line RT4

Author:

Mehus Aaron A.,Bergum Nicholas,Knutson Peter,Shrestha Swojani,Kalonick Matthew,Zhou Xudong,Garrett Scott H.,Sens Donald A.,Sens Mary Ann,Somji Seema

Abstract

The bladder is a target organ for inorganic arsenic, a carcinogen and common environmental contaminant found in soil and water. Urothelial carcinoma (UC) is the most common type of bladder cancer (BC) that develops into papillary or non-papillary tumors. Papillary tumors are mostly non-muscle invasive (NMIUC), easier treated, and have a better prognosis. Urothelial carcinoma can be molecularly sub-typed as luminal or basal, with papillary tumors generally falling into the luminal category and basal tumors exclusively forming muscle invasive urothelial carcinomas (MIUC). It is unclear why some UCs develop more aggressive basal phenotypes. We hypothesized that chronic arsenic exposure of a papillary luminal bladder cancer would lead to the development of basal characteristics and increase in invasiveness. We treated the human papillary bladder cancer cell line RT4 with 1 µM arsenite (As3+) for twenty passages. Throughout the study, key luminal and basal gene/protein markers in the exposed cells were evaluated and at passage twenty, the cells were injected into athymic mice to evaluate tumor histology and measure protein markers using immunohistochemistry. Our data indicates that chronic As3+- treatment altered cellular morphology and decreased several luminal markers in cell culture. The histology of the tumors generated from the As3+-exposed cells was similar to the parent (non-treated) however, they appeared to be more invasive in the liver and displayed elevated levels of some basal markers. Our study demonstrates that chronic As3+ exposure is able to convert a non-invasive papillary bladder cancer to an invasive form that acquires some basal characteristics.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3