Fracture Prediction of Steel-Plated Structures under Low-Velocity Impact

Author:

Cerik Burak Can1ORCID,Choung Joonmo1ORCID

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Inha University, Incheon 22212, Republic of Korea

Abstract

In this paper, a validation study of a recently proposed rate-dependent shell element fracture model using quasi-static and dynamic impact tests on square hollow sections (SHS) made from offshore high-tensile strength steel was presented. A rate-dependent forming limit curve was used to predict the membrane loading-dominated failure, while a rate-dependent ductile fracture locus was applied for predicting failure governed by bend loading. The predicted peak force and fracture initiation using the adopted material and fracture model agreed well with the experimental results. The fracture mode was also captured accurately. Further simulations were performed to discuss the importance of the inclusion of dynamic effects and the separate treatment of failure modes. Finally, the shortcomings of the common practice of treatment of rate-effects in low-velocity impact simulations involving fracture were highlighted.

Funder

Korea Environment Industry & Technology Institute

Korea Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3