Static Design for Laterally Loaded Rigid Monopiles in Cohesive Soil

Author:

Luo Ruping12,Hu Mingluqiu1,Yang Min3,Li Weichao3ORCID,Wang Anhui4

Affiliation:

1. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China

2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China

3. Department of Geotechnical Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China

4. China Construction Industrial & Energy Engineering Group Co., Ltd., Nanjing 210023, China

Abstract

Rigid monopiles with small slenderness ratios (i.e., ratio of monopile embedded length to outer diameter) are widely used as foundations to resist lateral load and moment transferred from superstructures, e.g., large diameter steel pipes used by offshore wind turbines and piers in electric utility industry or sound barriers. A design model for laterally loaded rigid monopiles in cohesive soil is presented in this paper. The proposed design model assumes a constant depth of rotation point as well as a trilinear distribution model of soil lateral reaction along the embedded length of the monopile, and introduces a mobilization coefficient of soil reaction to quantify the magnitude of soil reaction mobilized under a certain load applied at the monopile head. The relationship between the mobilization coefficient and monopile head rotation is established by back-analyzing test results measured from series of laterally loaded pile tests, and then a general design procedure for a laterally loaded rigid monopile in cohesive soil is recommended. The feasibility and reliability of the proposed design model is validated against three cases of numerical simulations on laterally loaded piles in cohesive soils. It shows that this study’s proposed design model produces a relatively satisfactory prediction of the nonlinear load-deformation response, and can be used for laterally loaded monopile design in the sites with undrained shear strength being uniform or increasing linearly with depth.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province of China

Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simplified Design Method of Laterally Loaded Rigid Monopiles in Cohesionless Soil;Journal of Marine Science and Engineering;2024-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3