A Field Investigation on Vortex-Induced Vibrations of Stay Cables in a Cable-Stayed Bridge

Author:

Chen Wen-LiORCID,Gao DonglaiORCID,Laima Shujin,Li HuiORCID

Abstract

A field study was conducted to identify the vortex-induced vibrations (VIVs) of stay cables in a cable-stayed bridge. A full-scale health-monitoring system was established to observe the wind effects of the selected cables. The vibration amplitudes in the twenty selected stay cables were first studied. The results indicate that only cable CAC20 has large amplitudes with a multimode and high-frequency vibration in the investigated period. The correlation between the wind and cable vibration was subsequently investigated. The large vibration amplitudes are primarily located in the mean speed scope of 4 to 6 m/s, simultaneously close to the reduced velocity of five when the wind was almost perpendicular to the bridge axis and had a smaller turbulence intensity. Moreover, the relationship between the maximum vibration amplitude with the mean wind speed was fitted by a function that was validated by the measured data. Finally, an estimation method was presented to predict the participative vibration modes that would happen in the VIVs of the stay cables, according to the known wind and cable parameters. The measured cable vibrations were employed to validate this estimation method. The results indicate the estimated vibration modes are close to the measured vibration modes.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3