Building Thermal and Energy Performance of Subtropical Terraced Houses under Future Climate Uncertainty

Author:

Xia Dawei1,Xie Weien1,Guo Jialiang1,Zou Yukai1,Wu Zhuotong1,Fan Yini1

Affiliation:

1. School of Architecture and Urban Planning, Guangzhou University, Guangzhou 511442, China

Abstract

Due to global temperature increases, terraced house (TH) residents face a threat to their health due to poor indoor thermal environments. As buildings are constructed by low-income residents without professional guidance, this study aims to investigate the indoor thermal comfort and energy resilience of THs under the future climate and determine the optimal passive design strategies for construction and retrofitting. By exploring the effects of building envelope structures, adjusting the window-to-wall ratio (WWR) and designing shading devices, EnergyPlus version 22.0 was used to optimize the thermal environment and cooling load of THs throughout their life cycle under future climate uncertainties. Unimproved THs will experience overheating for nearly 90% of the hours in a year and the cooling load will exceed 60,000 kWh by 2100 under the Representative Concentration Pathways (RCP) 8.5 scenario. In contrast, optimization and improvements resulted in a 17.3% reduction in indoor cooling load by increasing shading devices and the WWR, and using building envelope structures with moderate thermal insulation. This study can guide TH design and renovation, significantly reducing indoor cooling load and enabling residents to better use active cooling to combat future overheating environments.

Funder

Guangdong Basic and Applied Basic Research Foundation

Guangdong Philosophy and Social Science Planning Project

State Key Laboratory of Subtropical Building Science

Technology Program of Guangzhou University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3