Combined Effects of Fludarabine and Interferon Alpha on Autophagy Regulation Define the Phase of Cell Survival and Promotes Responses in LLC-MK2 and K562 Cells

Author:

Bowornruangrit Pathompong,Kumkate SupeechaORCID,Sirigulpanit Wipawan,Leardkamolkarn Vijittra

Abstract

Autophagy is a known mechanism of cells under internal stress that regulates cellular function via internal protein recycling and the cleaning up of debris, leading to healthy live cells. However, the stimulation of autophagy by external factors such as chemical compounds or viral infection mostly tends to induce apoptosis/cell death. This study hypothesizes that manipulation of the autophagy mechanism to the pro-cell survival and/or decreased pro-viral niche can be a strategy for effective antiviral and anticancer treatment. Cells susceptible to viral infection, namely LLC-MK2, normal monkey epithelium, and K562, human immune-related lymphocyte, which is also a cancer cell line, were treated with fludarabine nucleoside analog (Fdb), interferon alpha (IFN-α), and a combination of Fdb and IFN-α, and then were evaluated for signs of adaptive autophagy and STAT1 antiviral signaling by Western blotting and immunolabeling assays. The results showed that the low concentration of Fdb was able to activate an autophagy response in both cell types, as demonstrated by the intense immunostaining of LC3B foci in the autophagosomes of living cells. Treatment with IFN-α (10 U/mL) showed no alteration in the initiator of mTOR autophagy but dramatically increased the intracellular STAT1 signaling molecules in both cell types. Although in the combined Fdb and IFN-α treatment, both LLC-MK2 and K562 cells showed only slight changes in the autophagy-responsive proteins p-mTOR and LC3B, an adaptive autophagy event was clearly shown in the autophagosome of the LLC-MK2 cell, suggesting the survival phase of the normal cell. The combined effect of Fdb and IFN-α treatment on the antiviral response was identified by the level of activation of the STAT1 antiviral marker. Significantly, the adaptive autophagy mediated by Fdb was able to suppress the IFN-α-mediated pSTAT1 signaling in both cell types to a level that is appropriate for cellular function. It is concluded that the administration of an appropriate dose of Fdb and IFN-α in combination is beneficial for the treatment of some types of cancer and viral infection.

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3