Polyamine-Based Nanostructures Share Polyamine Transport Mechanisms with Native Polyamines and Their Analogues: Significance for Polyamine-Targeted Therapy

Author:

Holbert Cassandra E.ORCID,Foley Jackson R.,Yu Ao,Murray Stewart TracyORCID,Phanstiel OttoORCID,Oupicky DavidORCID,Casero Robert A.

Abstract

Polyamines are small polycationic alkylamines involved in many fundamental cellular processes, including cell proliferation, survival, and protection from oxidative stress. Polyamine homeostasis is tightly regulated through coordinated biosynthesis, catabolism, and transport. Due to their continual proliferation, cancer cells maintain elevated intracellular polyamine pools. Both polyamine metabolism and transport are commonly dysregulated in cancer, and as such, polyamine analogues are a promising strategy for exploiting the increased polyamine requirement of cancer cells. One potential polyamine analogue resistance mechanism is the downregulation of the poorly defined polyamine transport system. Recent advances in nanomedicine have produced nanostructures with polyamine analogue-based backbones (nanopolyamines). Similar nanostructures with non-polyamine backbones have been shown to be transported by endocytosis. As these polyamine-based nanoparticles could be a method for polyamine analogue delivery that bypasses polyamine transport, we designed the current studies to determine the efficacy of polyamine-based nanoparticles in cells lacking intact polyamine transport. Utilizing polyamine transport-deficient derivatives of lung adenocarcinoma lines, we demonstrated that cells unable to transport natural polyamines were also resistant to nanopolyamine-induced cytotoxicity. This resistance was a result of transport-deficient cells being incapable of importing and accumulating nanopolyamines. Pharmacological modulation of polyamine transport confirmed these results in polyamine transport competent cells. These studies provide additional insight into the polyamine transport pathway and suggest that receptor-mediated endocytosis is a likely mechanism of transport for higher-order polyamines, polyamine analogues and the nanopolyamines.

Funder

National Institutes of Health

Samuel Waxman Cancer Research Foundation

Pennsylvania Orphan Disease Center Million Dollar Bike Ride

Publisher

MDPI AG

Subject

General Economics, Econometrics and Finance

Reference57 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3