Influences of Gap Flow on Air Resistance Acting on a Large Container Ship

Author:

Nguyen Van TrieuORCID,Le Minh Duc,Nguyen Van Minh,Katayama Toru,Ikeda Yoshiho

Abstract

In terms of speed lost and fuel consumed, wind loads are considered one of the main factors for large ship design, especially for container ships. Alongside water resistance, air resistance in strong wind conditions has a significant impact on the fuel efficiency and performance of container ships with large box-type bodies. This paper reports the effects of wind loads acting on a 20,000 TEU container ship carrying large numbers of deck containers using a commercial CFD software program (ANSYS Fluent V14.5 with RANS equation). A 1/255.3 scale model was used in this study to reveal the air resistance on the container ship configuration. The aerodynamic formations of the complex vortices, pressure, velocity contours, and streamlines, as well as the air forces acting on the container ship, are presented and discussed. The pressure distributions show that the gap air flows increase the stagnation pressure at the face side and decrease the pressure on the backside of each container gap through separate eddies. The difference in pressures created in the gaps contribute to the air resistance acting on the ship. It is confirmed that the use of side covers of deck containers to close the gap flows between container blocks can significantly reduce the air resistance for wind directions in the range of 30 to 60 degrees.

Funder

The University of Danang

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3