Long-Strip Target Detection and Tracking with Autonomous Surface Vehicle

Author:

Zhang MeiyanORCID,Zhao Dongyang,Sheng Cailiang,Liu ZiqiangORCID,Cai WenyuORCID

Abstract

As we all know, target detection and tracking are of great significance for marine exploration and protection. In this paper, we propose one Convolutional-Neural-Network-based target detection method named YOLO-Softer NMS for long-strip target detection on the water, which combines You Only Look Once (YOLO) and Softer NMS algorithms to improve detection accuracy. The traditional YOLO network structure is improved, the prediction scale is increased from threeto four, and a softer NMS strategy is used to select the original output of the original YOLO method. The performance improvement is compared totheFaster-RCNN algorithm and traditional YOLO methodin both mAP and speed, and the proposed YOLO–Softer NMS’s mAP reaches 97.09%while still maintaining the same speed as YOLOv3. In addition, the camera imaging model is used to obtain accurate target coordinate information for target tracking. Finally, using the dicyclic loop PID control diagram, the Autonomous Surface Vehicle is controlled to approach the long-strip target with near-optimal path design. The actual test results verify that our long-strip target detection and tracking method can achieve gratifying long-strip target detection and tracking results.

Funder

Natural Science Foundation of Zhejiang Province

Fundamental Research Funds for the Provincial Universities of Zhejiang

National Natural Science Foundation of China

Scientific research foundation of Zhejiang University of Water Resources and Electric Power

Stable Supporting Fund of Acoustics Science and Technology Laboratory and the Foundation of Science and Technology on Near-Surface Detection Laboratory

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3