Application of LiDAR Data for the Modeling of Solar Radiation in Forest Artificial Gaps—A Case Study

Author:

Bolibok Leszek,Brach MichałORCID

Abstract

Artificial canopy gaps (forest openings) are frequently used as an element of regeneration cutting. The development of regeneration in gaps can be controlled by selecting a relevant size and shape for the gap, which will regulate the radiation microclimate inside it. Based on the size and shape of a gap computer models can assess where solar radiation is decreased or eliminated by the surrounding canopy. The accuracy of such models to a large extent depends on how the modeled shape of a gap matches the actual shape of the gap. The aim of this study was to compare the results of modeling solar radiation availability by applying Solar Radiation Tools (SRT) that use a different digital surface model (DSM) for a description of the shape of a studied gap, with the results of the analysis of 27 hemispherical photographs. The three-dimensional gap shape was approximated with the use of simple geometrical prisms or airborne laser scanning (LiDAR) data. The impact of two variations of exposure (automatic and manual underexposure) and two variations of automatic thresholding on the congruence of SRT and Gap Light Analyzer (GLA) results were studied. Taking into account information on differences in height between trees surrounding the gap enhanced the results of modeling. The best results were obtained when the boundary of the gap base estimated from LiDAR was expanded in all directions by a value close to a mean radius of the crowns of surrounding trees. Modeling of radiation conditions on the gap floor based on LiDAR data by an SRT program is efficient and more time effective than taking hemispherical photographs. The proposed solution can be successfully applied as a trustworthy source of information about light conditions in gaps, which is needed for management decision-making in silviculture.

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3