Abstract
Access to healthcare, including physiotherapy, is increasingly occurring through virtual formats. At-home adherence to physical therapy programs is often poor and few tools exist to objectively measure participation. The aim of this study was to develop and evaluate the potential for performing automatic, unsupervised video-based monitoring of at-home low-back and shoulder physiotherapy exercises using a mobile phone camera. Joint locations were extracted from the videos of healthy subjects performing low-back and shoulder physiotherapy exercises using an open source pose detection framework. A convolutional neural network was trained to classify physiotherapy exercises based on the segments of keypoint time series data. The model’s performance as a function of input keypoint combinations was studied in addition to its robustness to variation in the camera angle. The CNN model achieved optimal performance using a total of 12 pose estimation landmarks from the upper and lower body (low-back exercise classification: 0.995 ± 0.009; shoulder exercise classification: 0.963 ± 0.020). Training the CNN on a variety of angles was found to be effective in making the model robust to variations in video filming angle. This study demonstrates the feasibility of using a smartphone camera and a supervised machine learning model to effectively classify at-home physiotherapy participation and could provide a low-cost, scalable method for tracking adherence to physical therapy exercise programs in a variety of settings.
Funder
Canadian Institutes of Health Research and Natural Sciences and Engineering Research Council of Canada Collaborative Health Research Program
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference46 articles.
1. Morris, A.C., Singh, J.A., Bickel, C.S., and Ponce, B.A. (2015). Exercise therapy following surgical rotator cuff repair. Cochrane Database Syst. Rev.
2. Shoulder disorders in general practice: Incidence, patient characteristics, and management;Koes;Ann. Rheum. Dis.,1995
3. Prevalence and incidence of shoulder pain in the general population; a systematic review;Luime;Scand. J. Rheumatol.,2004
4. Real-world incidence and prevalence of low back pain using routinely collected data;Fatoye;Rheumatol. Int.,2019
5. US national prevalence and correlates of low back and neck pain among adults;Strine;Arthritis Care Res.,2007
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献