Carbon Nanotube Immunotoxicity in Alveolar Epithelial Type II Cells Is Mediated by Physical Contact-Independent Cell–Cell Interaction with Macrophages as Demonstrated in an Optimized Air–Liquid Interface (ALI) Coculture Model

Author:

Yadav Brijesh1ORCID,Yadav Jagjit S.1ORCID

Affiliation:

1. Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA

Abstract

There is a need for the assessment of respiratory hazard potential and mode of action of carbon nanotubes (CNTs) before their approval for technological or medical applications. In CNT-exposed lungs, both alveolar macrophages (MФs), which phagocytose CNTs, and alveolar epithelial type II cells (AECII cells), which show tissue injury, are impacted but cell–cell interactions between them and the impacted mechanisms are unclear. To investigate this, we first optimized an air–liquid interface (ALI) transwell coculture of human AECII cell line A549 (upper chamber) and human monocyte cell line THP-1 derived macrophages (lower chamber) in a 12-well culture by exposing macrophages to CNTs at varying doses (5–60 ng/well) for 12–48 h and measuring the epithelial response markers for cell differentiation/maturation (proSP-C), proliferation (Ki-67), and inflammation (IL-1β). In optimal ALI epithelial-macrophage coculture (3:1 ratio), expression of Ki-67 in AECII cells showed dose dependence, peaking at 15 ng/well CNT dose; the Ki-67 and IL-1β responses were detectable within 12 h, peaking at 24–36 h in a time-course. Using the optimized ALI transwell coculture set up with and without macrophages, we demonstrated that direct interaction between CNTs and MФs, but not a physical cell–cell contact between MФ and AECII cells, was essential for inducing immunotoxicity (proliferative and inflammatory responses) in the AECII cells.

Funder

University of Cincinnati’s Center for Environmental Genetics

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3