Circular Economy of Construction and Demolition Waste for Nanocomposite Cement: XRD, NMR, Vickers, Voltammetric and EIS Characterization

Author:

Rada Roxana1,Manea Daniela Lucia1ORCID,Rada Simona23ORCID,Fechete Radu2

Affiliation:

1. Faculty of Civil Engineering, Technical University of Cluj-Napoca, 400020 Cluj-Napoca, Romania

2. Physics and Chemistry Department, Technical University of Cluj-Napoca, 400020 Cluj-Napoca, Romania

3. National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania

Abstract

In this paper, we present the structural, mechanical and electrical properties of composite cement materials that can be widely used as substituent for cement. We start with the characterization of a composite cement sample using an analysis of X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) spectra. The measurements of the Vickers hardness, cyclic and sweep linear voltammetry and electrochemical impedance spectroscopy (EIS) of composite cement materials were also recorded. This study compared the effect of the different nanocomposites added to cement on the mitigation of the alkali–silica reaction, which is responsible for the swelling, cracking and deleterious behavior of the material. The enhancement in Vickers hardness was more pronounced for composite cement materials. In contrast, the values of Vickers hardness decreased for the composite cement containing mortar and the control sample, suggesting that the long-term performance of cement was compromised. In order to obtain information about the bulk resistance of the composite cement material, electrochemical impedance spectroscopy (EIS) data were employed. The results suggest that for composite cement materials, there is an improvement in bulk electrical resistance, which can be attributed to the lower amounts of cracks and swelling due to lower expansion. In the control sample, a reduction in the bulk resistance suggests the formation of microcracks, which cause the aging and degradation of the material. The intersection of arcs in the EIS spectrum of the mixed composite cement sample gradually increased by an alkaline exposure of up to 21 days and finally shifted towards a low value of high frequency with an increase in alkaline exposure of up to 28 days.

Funder

GNaC ARUT 2023 of the UTCN

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3