Effect of Titanium Dioxide Particles on the Thermal Stability of Silica Aerogels

Author:

Fan Caide12,Lu Jialu12,Duan Chengjie3,Wu Chengbin12,Lin Jiming34,Qiu Ruoxiang3,Zhang Zehui12,Yang Jianming12,Zhou Bin12,Du Ai12ORCID

Affiliation:

1. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China

2. Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, China

3. China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518000, China

4. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

Silica aerogels exhibit a unique nanostructure with low thermal conductivity and low density, making them attractive materials for thermal isolation under extreme conditions. The TiO2 particle is one of the common industrial additives used to reduce the thermal radiation of aerogel composites under high-temperature environments, but its influence on thermal resistance is almost unknown. Herein, we report the effect of TiO2 nanoparticles with different crystal phases and different sizes on the thermal stability of silica aerogel composites. By adding TiO2 nanoparticles, the aerogel can significantly resist collapse at high temperatures (up to 1000 °C). And compared with the rutile phase TiO2, the anatase phase TiO2 shows much higher temperature resistance performance, with shrinkage of only one-sixth of the rutile phase after 800 °C treatment. Interestingly, energy-dispersive spectrometer mapping results show that after 800 °C treatment, silica nanoparticles (NPs) are squeezed out in between anatase TiO2 particles, which resists the coarsening of silica NPs and ultimately enhances the stability of aerogel composites. The optimal anatase phase TiO2-doped silica aerogel demonstrates the integrated properties of crack-free morphology (2.84% shrinkage), low thermal conductivity (29.30 mW/(m·K)) and low density (149.4 mg/cm3) after 800 °C treatment. This study may provide new insights for developing oxide-doped silica aerogels with both high-temperature resistance and low thermal radiation.

Funder

Fundamental Research Funds for Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3