A High-Efficiency Super-Resolution Reconstruction Method for Ultrasound Microvascular Imaging

Author:

Guo Wei,Tong Yusheng,Huang Yurong,Wang Yuanyuan,Yu Jinhua

Abstract

The emergence of super-resolution imaging makes it possible to display the microvasculatures clearly using ultrasound imaging, which is of great importance in the early diagnosis of cancer. At present, the super-resolution performance can only be achieved when the sampling signal is long enough (usually more than 10,000 frames). Thus, the imaging time resolution is not suitable for clinical use. In this paper, we proposed a novel super-resolution reconstruction method, which is proved to have a satisfactory resolution using shorter sampling signal sequences. In the microbubble localization step, the integrated form of the 2D Gaussian function is innovatively adopted for image deconvolution in our method, which enhances the accuracy of microbubble positioning. In the trajectory tracking step, for the first time the averaged shifted histogram technique is presented for the visualization, which greatly improves the precision of reconstruction. In vivo experiments on rabbits were conducted to verify the effectiveness of the proposed method. Compared to the conventional reconstruction method, our method significantly reduces the Full-Width-at-Half-Maximum (FWHM) by 50% using only 400-frame signals. Besides, there is no significant increase in the running time using the proposed method. Considering its imaging performance and used frame number, the conclusion can be drawn that the proposed method advances the application of super-resolution imaging to the clinical use with a much higher time resolution.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3