Deep Learning-Based Radiomics for Prognostic Stratification of Low-Grade Gliomas Using a Multiple-Gene Signature

Author:

Karabacak Mert1ORCID,Ozkara Burak B.2ORCID,Senparlak Kaan3,Bisdas Sotirios24ORCID

Affiliation:

1. Department of Neurosurgery, Mount Sinai Health System, 1468 Madison Avenue, New York, NY 10029, USA

2. Department of Neuroradiology, MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA

3. School of Computation, Information, and Technology, Technical University of Munich, Theresienstr. 90, Bayern, 80333 Munich, Germany

4. Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London WC1N 3BG, UK

Abstract

Low-grade gliomas are a heterogeneous group of infiltrative neoplasms. Radiomics allows the characterization of phenotypes with high-throughput extraction of quantitative imaging features from radiologic images. Deep learning models, such as convolutional neural networks (CNNs), offer well-performing models and a simplified pipeline by automatic feature learning. In our study, MRI data were retrospectively obtained from The Cancer Imaging Archive (TCIA), which contains MR images for a subset of the LGG patients in The Cancer Genome Atlas (TCGA). Corresponding molecular genetics and clinical information were obtained from TCGA. Three genes included in the genetic signatures were WEE1, CRTAC1, and SEMA4G. A CNN-based deep learning model was used to classify patients into low and high-risk groups, with the median gene signature risk score as the cut-off value. The data were randomly split into training and test sets, with 61 patients in the training set and 20 in the test set. In the test set, models using T1 and T2 weighted images had an area under the receiver operating characteristic curve of 73% and 79%, respectively. In conclusion, we developed a CNN-based model to predict non-invasively the risk stratification provided by the prognostic gene signature in LGGs. Numerous previously discovered gene signatures and novel genetic identifiers that will be developed in the future may be utilized with this method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3