Assessment of the Wear of a Repeatedly Disassembled Interference-Fit Joint Operating under Rotational Bending Conditions

Author:

Kowalski Sławomir1ORCID,Barta Dalibor2ORCID,Dižo Ján2ORCID,Dittrich Aleš3ORCID

Affiliation:

1. Faculty of Engineering Sciences, State University of Applied Sciences in Nowy Sącz, 1a Zamenhofa Street, 33-300 Nowy Sącz, Poland

2. Department of Transport and Handling Machines, Faculty of Mechanical Enginering, University of Zilina, Univerzitná 1, 010 26 Žilina, Slovakia

3. Department of Vehicles and Engines, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402, 46117 Liberec, Czech Republic

Abstract

The purpose of the investigations was to assess the influence of repeated sleeve assembly on the wear of forced-in joint elements. The test methodology assumed operating a forced-in joint in rotational bending conditions, dismantling the joint after every thousand fatigue cycles, and then joint reassembling. The total number of fatigue cycles was 106, or as many as needed for fatigue cracking. The macroscopic observations of the shaft surface demonstrated the traces of fretting wear in the form of randomly spaced grey and dark brown stains at the axle seat circumference close to the joint edge. The size and number of the wear traces would increase with the number of fatigue cycles. The top layer wear also depended on the number of sleeve/shaft assembly processes. The microscopic observations confirmed fretting wear, which developed on the shaft surface. Numerous instances of surface microabrasion as well as micropullouts and surface scratches were observed. Material build-ups were also observed, which would crack and migrate. The chemical analysis of the composition of wear products demonstrated the presence of iron and oxygen atoms, which confirms the oxidation of wear products. The measurement of the maximum force needed to remove the sleeve from the shaft after the next fatigue cycle showed the need to use a greater force each time; however, a smaller force was needed to press the sleeve onto the shaft. As a result of the development of fretting wear, shafts would become fatigue-worn after 3.6 × 106 fatigue cycles.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3