Extreme Gradient Boosting-Based Machine Learning Approach for Green Building Cost Prediction

Author:

Alshboul Odey,Shehadeh AliORCID,Almasabha GhassanORCID,Almuflih Ali SaeedORCID

Abstract

Accurate building construction cost prediction is critical, especially for sustainable projects (i.e., green buildings). Green building construction contracts are relatively new to the construction industry, where stakeholders have limited experience in contract cost estimation. Unlike conventional building construction, green buildings are designed to utilize new technologies to reduce their operations’ environmental and societal impacts. Consequently, green buildings’ construction bidding and awarding processes have become more complicated due to difficulties forecasting the initial construction costs and setting integrated selection criteria for the winning bidders. Thus, robust green building cost prediction modeling is essential to provide stakeholders with an initial construction cost benchmark to enhance decision-making. The current study presents machine learning-based algorithms, including extreme gradient boosting (XGBOOST), deep neural network (DNN), and random forest (RF), to predict green building costs. The proposed models are designed to consider the influence of soft and hard cost-related attributes. Evaluation metrics (i.e., MAE, MSE, MAPE, and R2) are applied to evaluate and compare the developed algorithms’ accuracy. XGBOOST provided the highest accuracy of 0.96 compared to 0.91 for the DNN, followed by RF with an accuracy of 0.87. The proposed machine learning models can be utilized as a decision support tool for construction project managers and practitioners to advance automation as a coherent field of research within the green construction industry.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3