Proteomic and Metabolomic Signatures of Diet Quality in Young Adults

Author:

Costello Elizabeth1ORCID,Goodrich Jesse A.1ORCID,Patterson William B.2ORCID,Walker Douglas I.3,Chen Jiawen (Carmen)1,Baumert Brittney O.1,Rock Sarah1,Gilliland Frank D.1,Goran Michael I.14ORCID,Chen Zhanghua1,Alderete Tanya L.2ORCID,Conti David V.1,Chatzi Lida1

Affiliation:

1. Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90032, USA

2. Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA

3. Gangarosa Department of Environmental Health, Emory University, Atlanta, GA 30329, USA

4. Department of Pediatrics, Children’s Hospital Los Angeles, The Saban Research Institute, Los Angeles, CA 90027, USA

Abstract

The assessment of “omics” signatures may contribute to personalized medicine and precision nutrition. However, the existing literature is still limited in the homogeneity of participants’ characteristics and in limited assessments of integrated omics layers. Our objective was to use post-prandial metabolomics and fasting proteomics to identify biological pathways and functions associated with diet quality in a population of primarily Hispanic young adults. We conducted protein and metabolite-wide association studies and functional pathway analyses to assess the relationships between a priori diet indices, Healthy Eating Index-2015 (HEI) and Dietary Approaches to Stop Hypertension (DASH) diets, and proteins (n = 346) and untargeted metabolites (n = 23,173), using data from the MetaAIR study (n = 154, 61% Hispanic). Analyses were performed for each diet quality index separately, adjusting for demographics and BMI. Five proteins (ACY1, ADH4, AGXT, GSTA1, F7) and six metabolites (undecylenic acid, betaine, hyodeoxycholic acid, stearidonic acid, iprovalicarb, pyracarbolid) were associated with both diets (p < 0.05), though none were significant after adjustment for multiple comparisons. Overlapping proteins are involved in lipid and amino acid metabolism and in hemostasis, while overlapping metabolites include amino acid derivatives, bile acids, fatty acids, and pesticides. Enriched biological pathways were involved in macronutrient metabolism, immune function, and oxidative stress. These findings in young Hispanic adults contribute to efforts to develop precision nutrition and medicine for diverse populations.

Funder

National Institute of Environmental Health Science

Southern California Children’s Environmental Health Center

United States Environmental Protection Agency

Hastings Foundation

National Institute for Diabetes and Digestive and Kidney Diseases

National Cancer Institute

USC Center for Translational Research on Environmental Health

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3