Exploring the Physicochemical, Mechanical, and Photocatalytic Antibacterial Properties of a Methacrylate-Based Dental Material Loaded with ZnO Nanoparticles

Author:

Comeau PatriciaORCID,Burgess Julia,Malekafzali Niknaz,Leite Maria LuisaORCID,Lee Aidan,Manso Adriana

Abstract

While resin-based materials meet the many requirements of a restorative material, they lack adequate, long-lasting antimicrobial power. This study investigated a zinc oxide nanoparticle (ZnO NP)-loaded resin-blend (RB) toward a new antimicrobial photodynamic therapy (aPDT)-based approach for managing dental caries. The results confirmed that up to 20 wt% ZnO NPs could be added without compromising the degree of conversion (DC) of the original blend. The DC achieved for the 20 wt% ZnO NP blend has been the highest reported. The effects on flexural strength (FS), shear bond strength to dentin (SBS), water sorption (WS), solubility (SL), and viability of Streptococcus mutans under 1.35 J/cm2 blue light or dark conditions were limited to ≤20 wt% ZnO NP loading. The addition of up to 20 wt% ZnO NPs had a minimal impact on FS or SBS, while a reduction in the bacteria count was observed. The maximum loading resulted in an increase in SL. Furthermore, 28-day aging in 37 °C water increased the FS for all groups, while it sustained the reduction in bacteria count for the 20 wt% resin blends. Overall, the ZnO NP-loaded resin-based restorative material presents significant potential for use in aPDT.

Funder

New Frontiers in Research Fund - Exploration grant

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3