Microbial Fuel Cell as Battery Range Extender for Frugal IoT

Author:

Berlitz Carlos Augusto12ORCID,Pietrelli Andrea2,Mieyeville Fabien2ORCID,Pillonnet Gaël1,Allard Bruno2ORCID

Affiliation:

1. CEA-Leti, Université Grenoble Alpes, F-38000 Grenoble, France

2. Université de Lyon, INSA Lyon, Université Lyon 1, Ecole Centrale de Lyon, CNRS, Ampère, UMR5005, F-69621 Villeurbanne, France

Abstract

The simplest DC/DC converter for supplying an Internet-of-Things device is definitely a switched-capacitor converter. The voltage from a mere 1.2 V battery may be stepped up to 2 V. A quite large operating frequency is required in order to reach the smallest possible output impedance value of the DC/DC converter. The overall efficiency is then limited even more so if the power area density of the system should be large. The article details how a microbial fuel cell may substitute one capacitor in the switched-capacitor converter, achieving a better efficiency at a much lower operating frequency. In that perspective, the microbial fuel cell acts as a kind of battery range extender. Some limitations exist that are discussed. A simple converter is experimentally evaluated to support the discussion. Substituting a microbial fuel cell inside a 100 μW switched-capacitor converter compensates for losses in the order of 5% of efficiency. Moreover, the microbial fuel cell extends the lifespan of the battery, as 1.6 V output voltage is still possible when the battery voltage drops to 0.8 V. More than 94% efficiency is measured for a range of output power between 100 μW and 1 mW, which is sufficient to address a lot of frugal IoT applications.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3