A Bionic Control Method for Human–Exoskeleton Coupling Based on CPG Model

Author:

Sun Tianyi1,Zhang Shujun1ORCID,Li Ruiqi1,Yan Yao1

Affiliation:

1. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

Exoskeleton robots are functioning in contexts with more complicated motion control needs as a result of the technology and applications for these robots rapidly developing. This calls for novel control techniques to accommodate their employment in a range of real-world settings. This paper proposes a bionic control method for a human–exoskeleton coupling dynamic model based on the CPG model, utilizing a model on the dynamics of the human–exoskeleton interaction. The CPG network is established as an oscillator by two neurons inhibiting one another, which approximates the torques simulated in the inverse dynamic analysis as the input to the exoskeleton robot. The findings of the simulation assessment suggest that the bionic control strategy may improve the robot’s ability to move quickly and steadily, as well as better adapt to challenging environments.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3