Green Synthesis, Characterizations of Zinc Oxide Nanoparticles from Aqueous Leaf Extract of Tridax procumbens Linn. and Assessment of their Anti-Hyperglycemic Activity in Streptozoticin-Induced Diabetic Rats

Author:

Ahmed Syed S.1ORCID,Alqahtani Ali M.2ORCID,Alqahtani Taha2ORCID,Alamri Ali H.3ORCID,Menaa Farid4ORCID,Mani Rupesh Kumar1ORCID,D. R. Bharathi1,Kavitha Kunchu5

Affiliation:

1. Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, BG Nagara, Mandya 571448, India

2. Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia

3. Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia

4. Departments of Internal Medicine and Nanomedicine, Fluorotronics, Inc. & California Innovations Corporation, San Diego, CA 92037, USA

5. Department of Pharmaceutics, NITTE College of Pharmaceutical Sciences, Bangalore 560064, India

Abstract

Herein, zinc oxide nanoparticles (ZnO NPs) were greenly synthesized from Tridax procumbens aqueous leaf extract (TPE) and characterized physically (e.g., Fourier-transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM)) and biologically (test of their anti-diabetic activity). Anti-diabetic activities of TPE and TPE-derived ZnO NPs have been carried out in a streptozotocin (STZ)—induced diabetic rat model. Diabetes mellitus (DM) was induced with a single intraperitoneal dosage of the glucose analogue STZ (55 mg/Kg) known to be particularly toxic to pancreatic insulin-producing beta-cells. TPE and TPE-derived ZnO NPs were administered orally, once every day for 21 days in diabetic rats, at 100 and 200 mg/Kg, respectively. The standard antidiabetic medication, glibenclamide, was used as a control at a dose of 10 mg/Kg. Various parameters were investigated, including bodyweight (bw) variations, glycemia, lipidaemia, glycated hemoglobin (HbA1c), and histopathological alterations in the rat’s liver and pancreas. The TPE-mediated NPs were small, spherical, stable, and uniform. Compared to TPE and, to a lesser extent, glibenclamide, TPE-derived ZnO NPs lowered blood glucose levels considerably (p < 0.05) and in a dose-dependent manner while preventing body weight loss. Further, positive benefits for both the lipid profile and glycated hemoglobin were also noticed with TPE-derived ZnO NPs. The histopathological assessment revealed that synthesized TPE-derived ZnO NPs are safe, non-toxic, and biocompatible. At 200 mg/Kg/day, TPE-derived ZnO NPs had a more substantial hypoglycemic response than at 100 mg/Kg/day. Thus, in this first reported experimental setting, ZnO NPs biosynthesized from the leaf extract of Tridax procumbens exert more potent anti-diabetic activity than TPE and glibenclamide. We conclude that such a greenly prepared nanomaterial may be a promising alternative or complementary (adjuvant) therapy, at least to the current Indian’s traditional medicine system. Translational findings are prompted in human populations to determine the efficacy of these NPs.

Funder

King Khalid University

statutory activity of the Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3