Computed Tomography 3D Super-Resolution with Generative Adversarial Neural Networks: Implications on Unsaturated and Two-Phase Fluid Flow

Author:

Janssens NickORCID,Huysmans MarijkeORCID,Swennen RudyORCID

Abstract

Fluid flow characteristics are important to assess reservoir performance. Unfortunately, laboratory techniques are inadequate to know these characteristics, which is why numerical methods were developed. Such methods often use computed tomography (CT) scans as input but this technique is plagued by a resolution versus sample size trade-off. Therefore, a super-resolution method using generative adversarial neural networks (GANs) was used to artificially improve the resolution. Firstly, the influence of resolution on pore network properties and single-phase, unsaturated, and two-phase flow was analysed to verify that pores and pore throats become larger on average and surface area decreases with worsening resolution. These observations are reflected in increasingly overestimated single-phase permeability, less moisture uptake at lower capillary pressures, and high residual oil fraction after waterflooding. Therefore, the super-resolution GANs were developed which take low (12 µm) resolution input and increase the resolution to 4 µm, which is compared to the expected high-resolution output. These results better predicted pore network properties and fluid flow properties despite the overestimation of porosity. Relevant small pores and pore surfaces are better resolved thus providing better estimates of unsaturated and two-phase flow which can be heavily influenced by flow along pore boundaries and through smaller pores. This study presents the second case in which GANs were applied to a super-resolution problem on geological materials, but it is the first one to apply it directly on raw CT images and to determine the actual impact of a super-resolution method on fluid predictions.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

General Materials Science

Reference160 articles.

1. Pore-scale characterisation and modelling of CO2flow in tight sandstones using X-ray micro-CT.; Knorringfjellet formation of the longyearbyen CO2lab, Svalbard;Stappen;Nor. J. Geol.,2014

2. The Imaging of Dynamic Multiphase Fluid Flow Using Synchrotron-Based X-ray Microtomography at Reservoir Conditions

3. Dynamic Three-Dimensional Pore-Scale Imaging of Reaction in a Carbonate at Reservoir Conditions

4. CO2 storage in geological media: Role, means, status and barriers to deployment

5. The IPCC Special Report on Carbon Dioxide Capture and Storage;Metz,2005

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3