Investigating the Potential of a Transparent Xanthan Polymer for Enhanced Oil Recovery: A Comprehensive Study on Properties and Application Efficacy

Author:

Hublik Gerd1ORCID,Kharrat Riyaz2ORCID,Dastjerdi Ali Mirzaalian2ORCID,Ott Holger2ORCID

Affiliation:

1. Jungbunzlauer Austria AG, 2064 Wulzeshofen, Austria

2. Department Geoenergy, Montanuniversität Leoben, 8700 Leoben, Austria

Abstract

This study delves into the properties and behavior of xanthan TNCS-ST, a specialized variant designed for enhanced oil recovery (EOR) purposes. A notable aspect of this polymer is its transparency and capability to dissolve in high salt concentrations, notably up to 18% total dissolved solids. Various laboratory methods are employed to assess the polymer’s distinctive traits, including transparency, salt tolerance, and high pyruvylation. These methods encompass preparing xanthan solutions, conducting filtration tests, assessing energy consumption, and measuring rheological properties. The findings highlight the influence of salt concentration on xanthan’s filterability, indicating increased energy requirements for dissolution with higher salt and xanthan concentrations. Additionally, this study observes temperature-dependent viscosity behavior in different solutions and evaluates the shear stability of xanthan. A significant and novel characteristic of TNCS-ST is its high salt tolerance, enabling complete dissolution at elevated salt concentrations, thus facilitating the filterability of the xanthan solution with sufficient time and energy input. Core flooding experiments investigate fluid dynamics within porous rock formations, particularly sandstone and carbonate rocks, while varying salinity. The results underscore the substantial potential of the new xanthan polymer, demonstrating its ability to enhance oil recovery in sandstone and carbonate rock formations significantly. Remarkably, the study achieves a noteworthy 67% incremental recovery in carbonate rock under the high salinity level tested, suggesting promising prospects for advancing enhanced oil recovery applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3