Fractality–Autoencoder-Based Methodology to Detect Corrosion Damage in a Truss-Type Bridge

Author:

Valtierra-Rodriguez Martin1ORCID,Machorro-Lopez Jose M.2ORCID,Yanez-Borjas Jesus J.1,Perez-Quiroz Jose T.3ORCID,Rivera-Guillen Jesus R.1ORCID,Amezquita-Sanchez Juan P.1ORCID

Affiliation:

1. ENAP-RG, CA Sistemas Dinámicos y Control, Facultad de Ingeniería, Departamento de Electromecánica, Universidad Autónoma de Querétaro, Campus San Juan del Río, San Juan del Río 76807, Querétaro, Mexico

2. Investigador CONAHCYT—Instituto Mexicano del Transporte, Km 12 Carretera Estatal No. 431 “El Colorado-Galindo” San Fandila, Pedro Escobedo 76703, Querétaro, Mexico

3. Instituto Mexicano del Transporte, Km 12 Carretera Estatal No. 431 “El Colorado-Galindo” San Fandila, Pedro Escobedo 76703, Querétaro, Mexico

Abstract

Corrosion negatively impacts the functionality of civil structures. This paper introduces a new methodology that combines the fractality of vibration signals with a data processing stage utilizing autoencoders to detect corrosion damage in a truss-type bridge. Firstly, the acquired vibration signals are analyzed using six fractal dimension (FD) algorithms (Katz, Higuchi, Petrosian, Sevcik, Castiglioni, and Box dimension). The obtained FD values are then used to generate a gray-scale image. Then, autoencoders analyze these images to generate a damage indicator based on the reconstruction error between input and output images. These indicators estimate the damage probability in specific locations within the structure. The methodology was tested on a truss-type bridge model placed at the Vibrations Laboratory from the Autonomous University of Queretaro, Mexico, where three damage corrosion levels were evaluated, namely incipient, moderate, and severe, as well as healthy conditions. The results demonstrate that the proposal is a reliable tool to evaluate the condition of truss-type bridges, achieving an accuracy of 99.8% in detecting various levels of corrosion, including incipient stages, within the elements of truss-type structures regardless of their location.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3